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A previously described numerical technique for the solution of multiphase flow 
dynamics problems is here both simplified and extended. The simplitication cuts down 
slightly on the momentum coupling among fields, allowing for considerable reduction 
in complexity of the formulation. The extensions include the capability for compressibil- 
ity in each material phase, the addition of more interpenetrating fields, and the allow- 
ance for motion of a liquid or vapor through a close-packed field of particles. The 
technique is illustrated by computer-generated plots from a time-varying three-field 
calculation in a cylindrically symmetric configuration. 

The numerical calculation of multiphase fluid flow has been discussed previously 
[l] for the special case of two phases, one being microscopically incompressible. 
The calculation technique in that form has proved useful for a variety of studies 
in which the interpenetrating materials could undergo strong, time-varying 
distortions in an axisymmetric flow configuration. 

For some purposes, for example the safety analysis of a liquid metal cooled fast 
breeder reactor (LMFBR), the restriction of the numerical technique to handle 
only two fields of material is not adequate. For other applications it is too restrictive 
that one of the materials must be completely incompressible. In the process of 
extending the computer technique to remove these restrictions and add other new 
capabilities, it soon became apparent that an alternative approach exists for the 
numerical solution of multiphase fluid flow problems, in which the whole procedure 
could be appreciably simplified. 

It was also apparent that the advantages of this alternative approach might be 
partially offset by convergence difficulties resulting from a slightly less implicit 
momentum coupling between fields, which is necessary to achieve the desired 

* This work was performed under the auspices of the United States Nuclear Regulatory Com- 
mission and the Energy Research and Development Administration. 

Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MULTIPHASE FLOW CALCULATIONS 441 

simplification. We nevertheless constructed a computer code by which to test the 
new version and have found that the desired advantages can be achieved, and that 
the anticipated difficulties with convergence can be overcome quite easily. 

Accordingly, it is the purpose of this paper to describe the new procedure for 
multiphase fluid flow calculations, to show the ease by which this version can be 
applied to circumstances with many simultaneously interpenetrating material 
phases, to demonstrate its capability for considerably greater flexibility in handling 
both compressible and incompressible materials, and to show the relative simplicity 
of the technique. 

THE DIFFERENTIAL EQUATIONS 

We employ the same nomenclature as in the previous paper [l], in terms of 
which the differential equations of motion for each of the various fields, or phases, 
can be written 

Jg + v - (p’u) = s, , 

%$ + v * (p’uu) = s, - evp + v + p’g + K(ii - u), (2) 

in which S, and S, are sources (or sinks) to the mass and momentum of the field 
resulting from phase transitions, body forces, or other similar effects. Where 
necessary, we may refer to the field variables of a particular phase by means of 
subscripts 1 and n, reserving i and j for use in the finite-difference approximations. 
For example, 8, denotes the volume fraction of the Ith phase, with 

Ce, = 1. 
I 

(3) 

The mean resistive velocity iiz for a phase, and the effective drag function for 
that phase, Kz , are detined in terms of binary interactions between phases, K,, , 
as follows. 

K&i, = ~Kz,u,. (5) 
n 

It is essential for momentum conservation that K,, = Knd , and the magnitudes 
of these functions are expected to be positive under all physically realistic circum- 

581/18/4-7 
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stances. Reference [I] gave an example for the case of particles in a vapor. More 
generally, we expect 

which reduces to the previous expression in the proper limit, but is also capable of 
approximating the binary momentum exchange between two fields at various 
intermediate proportions of mixture. The coefficients CDln are ordinarily near 
unity in magnitude. 

The microscopic properties of each field are described by an equation of state 

in which 

Pz =f&pz 3 41, (7) 

We have imposed the physically reasonable constraint that pI = p for all fields; 
that is, there is local pressure equilibrium among the fields at every instant of time. 
In the calculation, there is one step, called equilibration, in which this constraint 
and Eq. (3) are combined to determine the volume fractions for the fields as well 
as the local, instantaneous pressure. If, for example, the equation of state can be 
approximated by 

P = a”(p - PO) + (Y - 1) PI, (9) 

then equilibration when a2 is very large results in a microscopic density that remains 
very close to p. , and the dynamics of that phase behaves as though the material 
were essentially incompressible. For practical calculations, it is important to allow 
for much more general equations of state than the form in Eq. (9), and we have 
found it advantageous to write our present computer code with a separate equation- 
of-state section to allow for maximum flexibility in this regard, which also calculates 
ap/i?p, exemplified in the following equations by a2 + (y - 1)1. 

We have, in addition, an equation for each field or phase describing the transport 
of specific internal energy, 1, which we have found appropriate to write in the 
following form. 

y + v * (llp’l) 

ep ap =- 
P [ x+u*vp] +s,+zqT- Y-)+x4+ vi+v-(kevT). (10) 

Si is a source function describing the generation of internal energy from phase 
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transitions, chemical sources or sinks, and similar processes. R is an exchange 
function to the mean exchange temperature for that field. Again, we assume binary 
processes, for which 

Rt = c Rat , (11) 
?a 

The heat conduction term utilizes a coefficient, k, which must vanish whenever 
the phase becomes disperse, that is, the volume fraction becomes small. The 
dissipative term, (1, represents the rate of internal energy production as a result 
of momentum exchange. The total rate from this process for all the fields is 

(13) 

which we partition among fields 

A, = &A, (14) 

with weighting coefficients, h, , that depend on local conditions and must satisfy 
the constraint 

CA, = 1. (15) 
2 

NUMERICAL PROCEDURE 

As in Ref. [I], we introduce an Eulerian mesh of computational cells for the 
representation of data describing the field variables, and for the approximation 
of the differential equations by finite difference representations. Field variables 
centered in the rectangular cells include the density, pressure, and internal energy 
of each phase. The cell-centered variables are labeled with indices i andj, counting 
cell numbers in the r and z directions, respectively. The fluid velocities, in contrast, 
are centered on the sides of the cell and labeled with half-integer indices. For 
example, uj+(,,,) is the radial velocity, located on the right face of the cell, and 
rP”“) is the axial velocity, located on the top face of the cell. z 

For any cell-centered quantity, Qii, the convective flux through the side of the 
cell is given by the product of the normal component of velocity and the quantity, 
for example (uQ):+(~,~J . In a form that combines both centered and donor-cell 
properties, we change this flux expression to 
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in which the value of [ is controlled by the specified parameters, % and /3,, , which 
have magnitudes lying between zero and 0.5, and 

5 - @ouZ+~l~2) at)lsr + a0 sign(ui+cl,2)). (17) 

For each of the fields in a computational cell we approximate the components 
of the viscous stress terms in Eq. (2) by 

KJ:+(1/2) = 5 I* b):+(3,2) - (‘~):+d - y K~~)l+m - (ru)C~I,2~1~ 2 

+ 6 w>::z:; b&,2, - d,(l,,)l - w>:;I::2”,’ [4+(1,2) - GI/& 

and 
(18) 

(yz);+m = * {(p’)g-~;~~ ri+(1,2)[&y2) - u:+y 

: (p’);+$; ri&(l,2)[u;+(1’2) - @‘2’]} 

?'+(3/2) 
+ $ wx+l [Vi 

_ u:+h/")] _ (p')i [o:+(1/2) _ p/2)]}* 
(19) 

In this form, the purpose of viscosity is to damp the high-frequency oscillations 
that cannot be resolved or would lead to numerical instability, but the magnitude 
of vs 3 the specified kinematic viscosity coefficient, must not be so great as to 
appreciably damp the larger-scale flow instabilities of physical interest [2]. 

We define, for each field, the quantities 
-. 
w4X+(1/2) 

= 

and 

With these shorthand expressions, the finite-difference approximations to Eq. (2) 
become 

n+1cD'4:+(l/2) = 

-. 
(p’UX+(1,2) + K!+m St(n+lE:+(,,,) - n+lU:+(,,,)) 

- e;+(1,2) st(n+lp:+l - n+lp;)/sr, (22) 
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and 
~. n+l(p/y);+(l/a) = @r2));+(1/2) + K$(1/2) &(n+lfif+(l/2) _ n+l,;+wS)) 

_ g+‘1/2’ &(n+lp:+l - ““pi”)/&. (23) 

In similar fashion, Eq. (1) becomes 

“+lD: = [n+l@r)iJ - “(p’)ij]/St + [n+1(p’~r):+~,,2~ - n+1(p’~r)j,-(,,2~]/(ri 6r) 

+ [n+l(p'u);+(l'2) _ "+yp'~)p2q/sz - (s,): = 0. 

The left superscript, II or n + 1, counts time cycles; where omitted, time cycle n is 
implied. 

With the equations written in this fashion, we can outline the solution procedure 
in terms of the following steps. 

1. As a result of calculations from the previous cycle or the specification of 
initial conditions, the computer memory contains for every computational cell 
the field variables for each material phase in that cell. Since the mass and 
momentum equations have been written in an implicit formulation, their 
solutions will be obtained by iteration. (The internal energy calculations are 
postponed to the last part of each cycle, where they are performed explicitly.) 
Each complete iteration consists of two basic parts, the first treating the 
material phases in each cell independently, and the second performing a 
pressure equilibration among phases. In this first step, the various field 
variable values are initialized. 

2. For each of the material phases, a value of D is calculated from Eq. (24), 
which in turn enters a Newton-Raphson formula for the determination of an 
increment to the pressure variable. By means of the equation of state, the 
revised density of the cell is calculated for each phase. 
3. Adjustments to the volume fraction for each phase are calculated in order 
to bring the pressures into local equilibrium. If the material of a phase is 
granular or particulate, and capable of close packing, then its pressure is not 
equilibrated to that of the other materials for those computational cells in 
which the volume fraction of the material equals (or exceeds) the specified 
magnitude for close packing. The pressure in the close-packed field allows its 
contortions to proceed with little or no further compression depending on 
the equation of state of the close-packed phase, while the independent pressure 
field for the interpenetrating phases allows for their continuing permeation. 

4. The equilibrated pressures are used to calculate the material velocities 
for each phase. 
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In these steps, the essential difference from the previous technique [l] is apparent. 
There, because of completely implicit momentum coupling among fields, the 
material phases in each cell could not be treated independently, leading to equations 
of considerable complexity, which would be difficult to extend to the case of many 
different material phases per cell. 

Steps 2-4 of the iteration are repeated until the value of D is sufficiently small, 
at which stage the iteration is considered to have converged. Throughout this 
process, the IZ + 1 values in the finite-difference equations are replaced by those 
same quantities symbolized by a tilde over each. 

To initialize the field variables that will be adjusted during the iterations (step 1, 
above) we first calculate the pressure for each material phase that is not close packed 
by means of the equation of state, using the updated internal energy, which was 
calculated after the pressure equilibration in the previous cycle, so that at this 
stage, there is no longer a precise local pressure equilibrium. Then the velocity 
components are initialized by 

-. -5 
%+(1/2) = 

(f’UX+(1,2) + r%+(1,2) ww*: - &+,I + (mi+(1/2) at ) 
n(P'x+u,2~ + Ki+u,2) at 

(25) 

4+(1/2) _ 
Vi 

_ 0:+(1/2) + p{+‘1’2’ &/&)(fij - &'l) + (K&+(1'2) & 

n($):+w2) z + K~+W) & . (26) 

Next, the density and void fraction values are initialized by 

(jY)i’ = (“p’); - at I& KP'Wl+(l,2) - <P"'~~>i,-~~)l 

+ & [(p7);+cl/2) _ (p'e);-"/2']~, 
(27) 

and 

8: = (p”‘):/po , (28) 

the latter being calculated only for those fields that are close packed, that is, for 
which the new value of 13 from Eq. (28) exceeds the specified volume fraction at 
which the particles or granules of the field are touching each other. The fields that 
are not close packed are then equilibrated in pressure to determine their volume 
fractions, which must add up to the total volume fraction allowed by the close- 
packed fields. This completes the initialization for iteration. 
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The iterative steps commence with a calculation of fi for each material phase. 
If the material is not close packed, 

Dij = ; [(p”‘)i - yp$] + -& [(p’cr)ji+(l,2) - (p”‘zir):-(,,,)] 
2 

1 mt- 3+(1/2) 
+ $y KP O>i - (pyjpy - so . (2% 

If it is close packed, and essentially incompressible, 

d,i = (jY>: ]& [ 22 (1/2Yi+(1/2) - 4&2)W1,2~1 + & F2:+(1’2) d+ - @l/2)]). (30) 

For close-packed fields in which the compressibility is important (e.g., for the 
propagation of shocks or rarefactions through the touching granules), Eq. (29) 
is used, but in such a case the time step per cycle will usually have to be very 
much smaller in order to resolve the dynamics. 

With a specified value for the over/under relaxation parameter, w, the pressure 
increment for each field is 

S$t = -Qijijii, (31) 

in which 

1 
Bij = [a” + (y L 1) Q] 6t + &% [ 

ri+(l12)e~+(l12) + ri-(l~2#-Z-(l~2~ 

6r 

ri+(l12)Ki+(1/2) ( 
%,(I/,) - 

ag ) + W1/21~~-(1/2~ ( &,,2, 

ajy )I 
+ g [ e:+‘1’2’ ; eP2’ _ Kp(1/2) ( a@$ ) + Ki--(1/2) ( 

a&(1/2) ;$, )], 

(32) 
with 

a&,,,) _ -C(l12)(8t/W - {&(,,,db2 + (Y - 1) C(,I~~I 
ap,i- (p’)’ z-(1/2) + %,2,~t 

, 
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aalf’l/2’= #+(1’2)(&/&) - {5;+(1’2)/[a2 + (y - 1) z{+(l’q} 
a@ (p’y~+“/z, + q+u/2) & t 

and 

a.$-(l/2) ~p/2)(&/&) - (5;4’2)/[a2 + (y - 1) p'2q) 

ajij - (p’):-Cl/Z, + q-u/2, & 

From this updated pressure for each field, the density, p’, is calculated, using the 
equation of state and the value of 8 from the previous equilibration or the initial- 
ization. With p’ held tied for each field, the pressure is equilibrated among the 
fields that are not close packed. This results in a consistent set of new values for 
the volume fractions, which in turn can then be used to update the velocity 
components for each field, 

@)f+(,,,) = Gm++(1,2) + (8+(1,2) ww(~,i - 8!+3 + &:+m 6t (p”‘)’ *+(1/2) + K!+c1,2, at , (33) 

f 
(q+(112) _ @ 4i j+h/2) + (&+(1’2) &/&)(jQ -$") + (K;);+(l/21 & + @I):+(l/2)g*t 

I - 
(p'):+cl/z, + jq+wz, St 

(34) 

Finally, as a last step in the iteration, and in preparation for the next iteration, 
we calculate 

(&x+~1,2, = Kl2~2 + &2zs,1:+(,,2) 3 
(jy;J;+h/2) = [K12iJ2 + K12b2]{+(1'2), 

(K~2)l+w21 = VW1 + ~22~21:+(1,2) 9 (jy;2):+(l’2) = [&,d, + ~2s~2]:“““, 

(&)::+~1,2~ = K2li; + ~22tz,l:+(l,2) 9 (f&:+(1/2) = [K12tYl + K2252]::+(1’2). 

If these quantities were to be calculated simultaneously with Eqs. (33) and (34), 
the necessary formulation, like that of the previous technique [l], would be 
considerably more complicated and much less flexible, especially in regard to the 
addition of more fields to the calculation. 

When the iteration has converged, according to some appropriate measure of 
the smallness of D for all cells, then the internal energy of each material phase is 
calculated explicitly. This requires the density for each field from the previous 
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cycle, in order to evaluate $/at. The form we use at present for the internal energy 
equation is 

1 i+(1/2) 
+ z KPU>i 

- (pv)3;-(1/2)] 

_ p2 [ (rr):+(,,,:~~):c1,,, + I$+(~/~) 6z ZI:-(~/~) 11 
* 

+ & [ri+(l,2)W)i+(l,2) CC+, - Tii) - w1~2)Wk1~2) Vij- KLN 

+ & [(ke):+(1’2) (Tj+l- T;) - (ke):-(1’2) (Ti3 - T;-l)]/ 

+ Ri’at(Tij - Ti’). (35) 

The latest updated values should be used throughout, where available, except for 
the term npi’* We have found it necessary to repeat the calculation in Eqs. (27) 
and (28) after the iteration has converged, but before the convection of internal 
energy is calculated in Eq. (35). The work term in Eq. (10) has been written in a 
somewhat different form to facilitate donor-cell differencing. 

EQUILIBRATION 

The technique for bringing the pressures of all fields into local equilibrium is 
simple if the equation of state for every material phase is linear in the density. 
More generally, the equilibration can be accomplished by iteration. Let 

Qn = P -.fn(Pn , In). 

Our problem is to find the zeros of the Qn functions, solving for a set of 0,, values, 
subject to Eqs. (3) and (8). For this purpose, let 
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Through the iterative sequence, 8, remains unchanged for every close-packed field. 
For the non-close-packed, or open, fields we start with an initial guess for p and 
the 0, values. With sums that include only the open fields, each iteration changes 
the result from the previous one by amounts 

and 

in which B0 is the volume fraction not occupied by the close-packed fields. 
Experience shows that this iterative procedure converges very quickly for any 

set of well-behaved material phases. 
One restriction on this present technique can be illustrated by the effect on 

equilibration of having all fields nearly incompressible. Because the calculation 
of p’ values for each field is independent of the processes occurring in the other 
fields, except for equilibration, it is possible to enter this section with a small 
amount more or less of total mass in a cell than would be possible at normal 
microscopic density, so that equilibration will result in a corresponding departure 
in each ‘field from that density, with consequent strong departures in pressure 
from the values expected in the ordinary course of a calculation. Thus we see that 
relaxation of the degree of implicitness in this present numerical procedure means 
that in every computational cell there must be an appreciable amount of at least 
one highly compressible field. 

AUTOMATIC TIME STEP AND DISSIPATION CONTROL 

Because of the implicit formulation of the equations, the time increment per 
computational cycle, St, is not limited by the usual Courant condition, which 
becomes highly restrictive as the local sound speed becomes large. For accuracy, 
however, it is necessary to impose a modified Courant condition, based on the 
maximum fluid speed in the system, u, . Indeed, we use this condition to determine 
St each cycle, in such a way that 

24, St/&r =f, (36) 

where Sx is the smaller of Sr and Sz and f is a specified number with magnitude 
somewhat less than unity. Actually, it is sufficient, and sometimes less restrictive, 
to calculate u,/Sx as the maximum among all values of u/Sr and v/Sz. 

The automatic control of dissipation occurs in Eqs. (18) and (19) in a very 
simple form. Donor-cell flux calculations also help to automatically control 
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dissipation, but the much more general technique of complete local truncation- 
error correction [3,4] is not incorporated into the technique at present. 

To estimate the necessary magnitude of vg for Eqs. (18) and (19), we use the 
results of Hirt [3] to show that 

or, with Eq. (36) 

v, m (Gi wm + G&n wwl, 

v, = f(f + 4) 6x2/(2&). 

To avoid diffusional instability, we also require 

4v, at < 8x2, 

which is automatically satisfied, provided f < Q. We have obtained satisfactory 
results using f = 4, which simultaneously ensures sufficiently small fluid motion 
per cycle and adequate dissipation, while precluding diffusional instability and 
excessive damping. Any improvements over this simple procedure would require 
the very complicated procedures of local truncation error subtraction [4], which, 
however, would be recommended to anyone seeking the greatest possible resolution 
of flow details. 

ITERATION CONVERGENCE RATE 

A major difference between the present technique and the one we previously 
described [I] is partial rather than complete implicitness of the momentum 
exchange between fields. The advantages of the partially implicit treatment include 
the relative decoupling of the equations in the iterative solution phase, and the 
resulting simplifications and ease of extension to allow for many fields. 

The contrast between the two approaches can be illustrated by a careful consider- 
ation of Eq. (22). For our purpose it is sufficient to consider the following simplified 
version of that equation, which, for the first field of a two-field calculation becomes 

ulh+l = A, + B,(iQ - ?.gfl), 

in which BI = K at/p1 and A, contains the remaining terms. The index, h, counts 
iteration number; as h -+ co, the terms with h or h + 1 approach the II + 1 values 
if the iteration converges. For this two-field illustration, UI = 24, , and the pair of 
equations becomes 

h+l 
4 = A, + Bl(U2h - u:+y, (37) 

up = A, + B,(?.g - u;+q. (38) 
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In our previous technique [ 11, the h-level quantities were replaced by their counter- 
parts at the h + 1 level, in which case the two equations could not be solved 
separately, as above, but required a simultaneous solution, namely, 

&I = = 6% + -414 + &A)/(1 + 4 + 4). (39) 

In the actual case, with pressures and density also varying during the iterations, 
this simple simultaneous solution becomes vastly more complicated. Our purpose 
here, however, is to show the manner in which the iterative solution of Eqs. (37) 
and (38) approaches the result in Eq. (39), since this result bears directly on the 
way in which our partially implicit multiphase technique converges. 

To perform the analysis, let u:+;” = u,~ + $+;“. Then one can show that 

~2” = B&/(1 + B,), 

and 
h+l 

+2 = B,~,~l(l + &I. 

Suppose that each error decreases by a factor F during the iteration, that is, 
l = FE,,~. Then n 

IT: = P,B,/(l + B,)U + &JY”, WI 

and it is this result that indicates the convergence-rate effect on our new technique 
from the partial implicitness of the momentum coupling. As long as the value 
of F, which can be controlled by the magnitude of at, is sufficiently smaller than 
unity, then rapid convergence is ensured. In particular, we automate the calculation 
to include a 6t control that overrides the one in the previous section, to force 
F 5 0.5 whenever necessary. Experience shows that this cutoff choice allows for 
rapid convergence insofar as the momentum coupling effects are concerned. We 
also have seen that little loss in computer running time would result from a cutoff 
at F 2 0.25, since the effect of decreased time step per cycle is nearly compensated 
by the smaller number of iterations per cycle required for convergence. In case 
the 6t required for control of F is smaller than that of the previous section by more 
than a factor of 10, the calculation warns against possible convergence inefficiency 
and recommends a review of the K formulation. Since K&/p’ measures the ratio 
of St to the relaxation time for the velocity difference between fields, its value need 
not greatly exceed unity for any problem of physical interest. Thus, inefficiency 
from F control can be eliminated by a ceiling on the K functions. This should not 
introduce errors in the physical representation, because fields that are already 
tightly tied to each other cannot behave with appreciable difference as a function 
of the tying strength. 
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EXAMPLE OF A TEST CALCULATION 

The following example serves to illustrate some of the features of the numerical 
technique. A wealth of information in both printed and visual form is available 
for analysis from the computer runs. The geometries of the actual application 
problems can be quite complicated, but we have chosen a highly simplified example 
to illustrate the capability for a fully three-field calculation. 

In preparation for the study of possible core disassembly accidents in the 
LMFBR, we have simulated the case of an idealized mockup of the reactor. The 
calculation follows the dynamics of three fields of material: (1) vapor, (2) fuel, 
and (3) iron. The vapor field is fully compressible, and is composed of a homo- 
geneous mixture of the vapors of coolant, fuel, and iron. The fuel and iron fields 
have much higher sound speeds than the vapor, and therefore behave microscopi- 
cally as though they were nearly incompressible. The schematic in Fig. 1 shows 
a central core (I), containing primarily vapor and dispersed fuel, an iron liner (II), 
which is initially close packed, although devoid of strength effects, and permeated 
with vapor, and an overhead region (III) of essentially pure vapor. The vapor in 
region I is heated and under pressure; the other two regions are relatively cool 
and in pressure equilibrium. The computing mesh is a confining system, bounded 
by an axis of cylindrical symmetry along the left, and rigid freeslip walls along the 
other three sides. 

Microfilm plots of computer results are shown in Figs. 2 through 5, in which 
each set of four plots is a sequence for a particular quantity, at nondimensional 
problem times 0.1, 50, 100, and 200 units, reading left to right, then down. The 
time 0.1, which is at the end of the first calculation cycle, exhibits the initial trends 
of velocity and pressure. 

c 

III 3 I II 

I I 

FIG. 1. Schematic of the flow regions of the computing mesh. 



454 HARLOW AND AMSDEN 

FIG. 2. Marker particle plots, at problem times 0.1, 50, 100, and 200, reading left to right 
and then down. Field 1 is represented by light dots, field 2 by crosses, and field 3 by open squares. 
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FIG. 3a. Velocity vectors for field 1. Within each sequence, the problem times are the same 
as those of Fig. 2. 
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FIG. 3b. Velocity vectors for field 2. Within each sequence, the problem times are the same 
as those of Fig. 2. 
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FIG. 3c. Velocity vectors for field 3. Within each sequence, the problem times are the same 
as those of Fig. 2. 
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FIG. 4a. Plots of volume fraction 0 for field 1. 
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FIG. 4b. Plots of volume fraction ti for field 2. 
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FIG. 4c. Plots of volume fraction 0 for field 3. 
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FIG. 5a. Plots of pressure for field 1. 
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FIG. 5b. Plots of pressure for field 2. 
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FIG. SC. Plots of pressure for field 3. 
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Figure 2 shows marker particle configurations, with field 1 represented by the 
light dots, field 2 by the crosses, and field 3 by the open squares. The relative 
proportions of the number of marker particles of each type in a given region is 
governed by the initial 8 for each field. This example employs comparatively few 
marker particles per unit area. Separate plots for each field are often appropriate 
for large numbers of particles, but the composite plots of particles from all fields, 
such as Fig. 2, are especially useful for showing relative motion and interpenetra- 
tion of the various fields with time. 

Figures 3a-3c show velocity vectors for fields l-3, respectively, with each vector 
originating at a cell center, denoted by a cross. Each lies in the direction of the 
local flow, and has a length proportional to local velocity magnitude. Because 
each plot is scaled to the maximum velocity in the given field at that instant of 
problem time, only a qualitative comparison between separate plots can be made. 
At t = 0.1, the only significant velocities are those of the expanding vapor from 
the heated central core. The velocity magnitudes of fuel and iron, which are 
fairly tightly bound to one another through the drag function &, only build up 
to values comparable to those of the vapor by around 2 = 50, and thereafter 
decay to a fraction of the magnitude of the vapor velocity. An effect of the confining 
rigid walls of the system is the strong circulation patterns that are induced. Note 
that in a number of instances the direction of the vapor velocity vectors is directly 
opposite to that of the local fuel and iron. 

Contours of the volume fraction 6’ are shown in the sequences of Figs. 4a-4c. 
In the contour plots, the H’s denote the lines with highest algebraic value, and 
the L denotes the point in the mesh with lowest algebraic value. Contours of 
pressure are shown in Figs. Sa-5c. The effects of pressure equilibration are par- 
ticularly apparent in the marked similarity between the plots for the two open 
fields, vapor (Fig. 5a), and fuel (Fig. 5b). Because the iron liner is initially close 
packed and has little opportunity to open significantly, the frames of Fig. 5c 
offer somewhat of a contrast to those of 5a and 5b. 
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